Acceleration Scenarios

J. Scott Berg Brookhaven National Lab

30 September 1999

Acceleration for a High Energy Muon Collider

- Start with beam with momentum 186 MeV/c
- Large longitudinal emittance
- ◆ 500 GeV collider: 0.024 eV-s
- 10 TeV collider: 0.021 eV-s
- 100 TeV collider: 0.047 eV-s
- Accelerate to desired energy
- Minimize decays (cost: longer run)
- Minimize system costs

Initial Stage: Linac

- Large longitudinal emittance
- Large relative energy spread at low energies
- Arcs difficult
- Large losses at low energies: don't waste time in arcs
- Linac relatively short
- Design based on matching beam to RF bucket in adiabatic approximation
- Bucket area determined by emittance: adjust phase to fill bucket
- Switch frequency to get higher gradient
- * Higher frequency, larger gradient
- * Higher frequency, further off crest
- Adiabatic approximation wrong with these gradients: probably good initial guess

10 TeV:

$1.9 \rightarrow 4.0$	$0.61 \rightarrow 1.9$	$0.186 \rightarrow 0.61$	GeV	Energy
800	200	50	MHz	Freq
800 179	194	123	m	Len.
	2.7	5.7	%	Loss
1.1 3606	2238	5.7 1076	MW	$P_{ m peak}$
2.0	5.3	9.0	WW	P_{avg}

100 TeV

$1.8 \rightarrow 4.0$	$0.59 \rightarrow 1.8$	$0.186 \rightarrow 0.59$	GeV	Energy
400	100	25	MHz	Freq
400 260	256	162	m	Len.
1.6	3.9	7.5	%	Loss
1.6 3685	2045	955	WW	$P_{ m peak}$
1.8	4.3	7.2	MW	P_{avg}

- Low frequency RF required
- Large cavities
- ◆ RF sources difficult (low frequency)
- Large power requirements
- ◆ Small efficiency (power to beam: few kW)
- ◆ 25 MHz probably prohibitive: need to reduce longitudinal emittance
- Split large longitudinal emittance bunch into several bunches with smaller longitudinal emittance
- Use higher frequency RF
- ◆ Later arcs become simpler
- Improve RF efficiency

Recirculating Linacs

- Go through same linac several times
- Increase efficiency (average power): more turns better
- Muons can be bent
- Size determined by largest energy
- Minimize decays: smaller recirculator for lower energies
- ◆ Lower energies, low frequency RF required: switch to allow higher RF frequency
- * Better gradients
- * Easier to get RF power
- ⋆ Better efficiency
- Different types of arcs

- Multiple arc
- ◆ Each pass, different arc
- Have full control of map through arc
- * Path length: hit RF at right phase
- * Momentum compaction: longitudinal dynamics
- ★ Match correctly into straights
- * Chromaticity
- Switchyard difficult
- * Fast at lower energies
- * Large beam size
- **★** Sufficient turn-to-turn energy jump: can do passively
- Low energies: relative energy spread large
- * May need factor of 2 in energy in one arc
- Many turns: lots of arcs

- Fast ramping magnets
- Like synchrotron
- ◆ Use SC to minimize decays, but can't ramp SC fast enough
- ◆ Lower energy: circumference short, insufficient time to ramp NC
- ◆ To keep high average fields: hybrid scheme
- * Fixed field SC magnets
- ★ Interleave NC magnets, ramped from —max to max.
- Same arc for multiple passes
- ⋆ Lose turn-by-turn control of map
- Not synchronized with RF phase
- Other dynamics can't be controlled
- > Fix with other ramped magnets
- ⋆ May still have energy acceptance problems

• HHAG

- Fixed-field magnets
- Accept large range of energies in one arc
- * As much as factor of 4 or more
- Large fraction of quadrupoles
- Arc length longer: average bend field smaller
- Only one arc
- ★ Can't control map turn-by-turn
- Can't synchronize with RF phase
- Longitudinal dynamics different for each pass
- > Only matched into straight for one energy
- > Chromaticity uncorrected
- ➤ Potentially fix with ramped NC magnets: high energy only
- Accepts large energy spread in beam for free
- * In multiple arc scheme, some low energy arcs require this type for only one turn
- Potentially combine with fast ramping scheme: get extra degree of freedom from ability to ramp?

- Example recirculators: 10 TeV collider
- 4-16 GeV recirculator
- ★ 800 MHz RF (lower frequency: larger momentum compaction needed, but better energy spread)
- ★ 5 turns: multiple arcs which don't need switchyard
- * $\alpha = .013 \rightarrow .052$, $\beta = 0.8 \rightarrow 1.6$ m (can make easier by reducing synchrotron tune, but energy spread increases)
- $\star \sigma_{\tau} = 80$ ps, $\sigma_{E} = 300$ MeV: first arc must accept factor of 2 in energy!
- ⋆ Decay loss: 1.7%
- ★ Max efficiency: 18.5%
- * Min peak power (matched): 924 MW
- * 3 μ s circulation time: no time to ramp
- ◆ 0.5-1.6 TeV recirculator
- **★ 800 MHz**
- ★ 50 turns
- * $\alpha = 0.0039 \rightarrow 0.0124$, $\beta = 44 \rightarrow 79$ m
- $\star \sigma_{\tau} = 39 \text{ ps}, \sigma_{E} = 609 \text{ MeV}$
- ⋆ Decay loss: 4.65%
- ⋆ Max efficiency: 71.7%
- * Min peak power (matched): 281 MW
- ⋆ Can go to many more turns: decays worse, efficiency, peak power better.
- ★ 0.94 ms circulation time: time to ramp

- Dynamic adjustment of path length
- Single-arc recirculators:
- ⋆ Different path lengths for each energy
- ★ Must correct to get correct RF phase
- Correct errors
- ⋆ RF energy/phase error
- * Beam current error (beam loading, energy changes)
- * Bad timing of bunch
- Methods
- * Pump in RF
- > High peak power
- > Better at high energies (longer time)
- ⋆ Vary frequency to vary phase
- Saturate ferrites
- Photodiodes
- * Ramping magnets
- > Only at higher energies with more time
- ◆ Cannot correct momentum compaction (slope of RF) using these methods
- * Want α/E constant

Instabilities

- Higher frequency RF gives larger wakefields
- Induce synchrotron oscillations to prevent linac instabilities
- ◆ 0.15 per linac-arc pair is maximum tune
- ★ Racetrack design gives 0.3
- * Can go to many-sided design to improve, but added overhead
- Potential head-tail instabilities: chromaticity not always corrected
- Transients may dominate behavior
- Power advantage to lower gradients, but instabilities worse

Linac Gradients

Linac Gradients

